Consulte nuestra página web: www.sintesis.com
En ella encontrará el catálogo completo y comentado
Técnicas básicas de microbiología y bioquímica

Conchi Rubio Granero
Ángeles García García
Fernando Cardona Serrate
<table>
<thead>
<tr>
<th>PRESENTACIÓN</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARTE I</td>
<td></td>
</tr>
<tr>
<td>MICROBIOLOGÍA</td>
<td></td>
</tr>
<tr>
<td>1. INTRODUCCIÓN A LA MICROBIOLOGÍA</td>
<td>15</td>
</tr>
<tr>
<td>Objetivos</td>
<td>15</td>
</tr>
<tr>
<td>Mapa conceptual</td>
<td>16</td>
</tr>
<tr>
<td>Glosario</td>
<td>16</td>
</tr>
<tr>
<td>1.1. Microbiología. Definición y objetivos</td>
<td>17</td>
</tr>
<tr>
<td>1.2. Clasificación de los microorganismos</td>
<td>18</td>
</tr>
<tr>
<td>1.2.1. Células procariotas y eucariotas</td>
<td>20</td>
</tr>
<tr>
<td>1.2.2. Virus</td>
<td>23</td>
</tr>
<tr>
<td>1.3. Principales grupos bacterianos de interés en clínica</td>
<td>24</td>
</tr>
<tr>
<td>1.4. Enfermedades producidas por microorganismos</td>
<td>27</td>
</tr>
<tr>
<td>1.5. Importancia de los microorganismos en la industria</td>
<td>28</td>
</tr>
<tr>
<td>1.5.1. Industria alimentaria</td>
<td>29</td>
</tr>
<tr>
<td>1.5.2. Industria química y farmacéutica</td>
<td>30</td>
</tr>
<tr>
<td>Resumen</td>
<td>31</td>
</tr>
<tr>
<td>Ejercicios propuestos</td>
<td>32</td>
</tr>
<tr>
<td>Lee y debate en clase</td>
<td>33</td>
</tr>
<tr>
<td>Actividades de autoevaluación</td>
<td>33</td>
</tr>
<tr>
<td>2. MORFOLOGÍA Y FISIOLOGÍA MICROBIANAS</td>
<td>35</td>
</tr>
<tr>
<td>Objetivos</td>
<td>35</td>
</tr>
<tr>
<td>Mapa conceptual</td>
<td>36</td>
</tr>
<tr>
<td>Glosario</td>
<td>37</td>
</tr>
</tbody>
</table>
2.1. Morfología bacteriana .. 37
 2.1.1. Formas y agrupaciones bacterianas ... 38
 2.1.2. Estructuras externas ... 40
2.2. Fisiología bacteriana ... 44
 2.2.1. Metabolismo bacteriano ... 44
 2.2.2. Nutrición bacteriana ... 48
 2.2.3. Genética bacteriana .. 50
2.3. Morfología y fisiología de los hongos ... 53
2.4. Ecología microbiana .. 54
Práctica n.º 1 .. 56
Resumen .. 57
Ejercicios propuestos .. 58
Lee y debate en clase .. 60
Actividades de autoevaluación ... 61

3. SEGURIDAD EN EL LABORATORIO ... 63
 Objetivos .. 63
 Mapa conceptual .. 64
 Glosario .. 64
 3.1. El laboratorio de microbiología .. 65
 3.1.1. Situación del laboratorio .. 66
 3.1.2. Distribución de espacios .. 66
 3.1.3. Normativa general aplicable .. 67
 3.2. Materiales, instrumentación y equipos ... 67
 3.2.1. De uso general .. 68
 3.2.2. De cultivo ... 69
 3.2.3. De descontaminación .. 70
 3.3. Seguridad biológica .. 70
 3.3.1. Riesgo biológico .. 71
 3.3.2. Clasificación de los agentes biológicos ... 72
 3.3.3. Medidas básicas para prevenir el riesgo de infección ... 73
 3.3.4. Medidas de contención ... 74
 3.3.5. Niveles de bioseguridad ... 77
 3.3.6. Buenas prácticas microbiológicas ... 79
 3.3.7. Procedimientos normalizados de trabajo ... 80
 3.3.8. Eliminación de residuos .. 80
 Resumen .. 82
 Ejercicios propuestos ... 83
 Lee y debate en clase ... 84
 Actividades de autoevaluación .. 84

4. EL MICROSCOPIO ÓPTICO ... 87
 Objetivos ... 87
 Mapa conceptual .. 88
 Glosario ... 88
 4.1. Algo de historia .. 89
 4.2. Fundamentos de microscopía .. 90
 4.2.1. De la lupa al microscopio .. 92
 4.3. Tipos de microscopios compuestos ... 93
 4.3.1. Microscopios ópticos ... 93
ÍNDICE

6.2.1. Términos de uso habitual en muestreo .. 142
6.2.2. Planes de muestreo de aceptación ... 143

6.3. Toma de muestras para análisis microbiológico .. 147
6.3.1. Toma de muestras de alimentos .. 148
6.3.2. Toma de muestras ambientales ... 149
6.3.3. Toma de muestras de superficies ... 150

6.4. Identificación, acondicionamiento y transporte de muestras 151
6.5. Procesado de las muestras ... 152
Práctica n.° 4 .. 154
Resumen ... 156
Ejercicios propuestos .. 157
Lee y debate en clase .. 158
Actividades de autoevaluación ... 158

7. CRECIMIENTO DE LOS MICROORGANISMOS. TÉCNICAS DE SIEMBRA Y AISLAMIENTO 161

Objetivos .. 161
Mapa conceptual .. 162
Glosario .. 162
7.1. Definición de crecimiento ... 163
7.2. Curva de crecimiento bacteriano ... 164
 7.2.1. Fases del crecimiento bacteriano ... 164
7.3. Medios de cultivo .. 167
 7.3.1. Clasificación .. 167
 7.3.2. Preparación ... 170
 7.3.3. Condiciones de cultivo .. 171
7.4. Técnicas de siembra y aislamiento ... 174
 7.4.1. Técnicas de siembra .. 174
 7.4.2. Técnicas de aislamiento ... 176
7.5. Mantenimiento de cultivos puros ... 178
Práctica n.° 5 .. 179
Resumen ... 180
Ejercicios propuestos .. 181
Lee y debate en clase .. 182
Actividades de autoevaluación ... 183

8. RECUENTO E IDENTIFICACIÓN DE MICROORGANISMOS 185

Objetivos .. 185
Mapa conceptual .. 186
Glosario .. 186
8.1. Introducción .. 187
8.2. Legislación sobre el recuento de microorganismos en alimentos y aguas 188
8.3. Microorganismos marcadores: índices e indicadores 190
 8.3.1. Microorganismos viables aerobios mesófilos ... 191
 8.3.2. Enterobacterias ... 191
 8.3.3. Estreptococos fecales o enterococos .. 193
 8.3.4. Clostridios sulfotolreductores. Clostridium perfringens 193
 8.3.5. Listeria monocytogenes .. 194
 8.3.6. Mohos y levaduras ... 195
INTRODUCCIÓN A LA BIOQUÍMICA I. GLÚCIDOS Y LÍPIDOS

Mapa conceptual
Objetivos

Práctica n.° 6
Resumen
Ejercicios propuestos
Lee y debate en clase
Actividades de autoevaluación

INTRODUCCIÓN A LA BIOQUÍMICA II. ÁCIDOS NUCLEICOS Y PROTEÍNAS

Mapa conceptual
Objetivos

Práctica n.° 7
Resumen
Ejercicios propuestos
Lee y debate en clase
Actividades de autoevaluación

9. INTRODUCCIÓN A LA BIOQUÍMICA I. GLÚCIDOS Y LÍPIDOS

Objetivos
Mapa conceptual
Glosario
9.1. Bioquímica: definición, campo de estudio y aplicaciones
9.2. Moléculas biológicas esenciales y composición de los seres vivos
9.3. Glúcidos
 9.3.1. Características de los glúcidos
 9.3.2. Clasificación de los glúcidos
 9.3.3. Monosacáridos
 9.3.4. Oligosacáridos
 9.3.5. Polisacáridos
 9.3.6. Funciones de los glúcidos
9.4. Lípidos
 9.4.1. Características de los lípidos
 9.4.2. Clasificación de los lípidos
 9.4.3. Ácidos grasos
 9.4.4. Lípidos saponificables
 9.4.5. Lípidos no saponificables
 9.4.6. Funciones de los lípidos
Práctica n.° 7
Resumen
Ejercicios propuestos
Lee y debate en clase
Actividades de autoevaluación

10. INTRODUCCIÓN A LA BIOQUÍMICA II. ÁCIDOS NUCLEICOS Y PROTEÍNAS

Objetivos
Mapa conceptual
Glosario
10.1. ADN: la molécula portadora del material genético
10.2. Características generales de los ácidos nucleicos .. 258
 10.2.1. Estructura y función del ADN ... 261
 10.2.2. Estructura y función del ARN ... 264
10.3. Propiedades fisicoquímicas de los ácidos nucleicos ... 266
 10.3.1. Tamaño y peso molecular ... 267
 10.3.2. Absorbancia ... 267
 10.3.3. Desnaturalización del ADN ... 268
 10.3.4. Propiedades ácido-base ... 269
10.4. Las proteínas ... 269
 10.4.1. Clasificación ... 270
 10.4.2. Funciones de las proteínas ... 271
10.5. Los aminoácidos ... 274
 10.5.1. Clasificación y nomenclatura de los aminoácidos 275
 10.5.2. Propiedades fisicoquímicas ... 276
 10.5.3. Actividad óptica y estereoisomería ... 278
 10.5.4. El enlace peptídico ... 278
10.6. Estructura de las proteínas .. 280
 10.6.1. Estructura primaria ... 280
 10.6.2. Estructura secundaria ... 280
 10.6.3. Estructuras terciaria y cuaternaria ... 282
10.7. Comportamiento de las proteínas en disolución. Desnaturalización 284
Práctica n.º 8 ... 285
Resumen ... 287
Ejercicios propuestos ... 288
Lee y debate en clase .. 290
Actividades de autoevaluación ... 290

11. ANÁLISIS DE BIOMOLÉCULAS .. 293
Objetivos ... 293
Mapa conceptual ... 294
Glosario .. 294
11.1. Extracción de biomoléculas ... 295
 11.1.1. Extracción y purificación de glucidos ... 297
 11.1.2. Extracción y purificación de lípidos ... 297
 11.1.3. Extracción y purificación de ácidos nucleicos 298
 11.1.4. Extracción y purificación de proteínas .. 299
11.2. Separación de biomoléculas ... 300
 11.2.1. Métodos cromatográficos ... 300
 11.2.2. Electroforesis ... 305
11.3. Identificación de biomoléculas ... 309
11.4. Cuantificación de biomoléculas ... 314
 11.4.1. Cuantificación de biomoléculas por espectrofotometría 314
 11.4.2. Cuantificación de lípidos y ácidos grasos ... 318
 11.4.3. Cuantificación de glucidos .. 321
11.5. Registro, etiquetado y conservación de los productos extraídos 322
Práctica n.º 9 ... 323
Resumen ... 325
Ejercicios propuestos ... 325
Actividades de autoevaluación ... 327
Entender cómo la taxonomía clasifica a los microorganismos.

Diferenciar las estructuras y funciones celulares más importantes en procariotas y eucariotas.

Distinguir los tipos de organización celular en procariotas y eucariotas.

Clasificar los tipos de virus en función de su material genético.

Agrupar y reconocer las bacterias de importancia en clínica.

Familiarizarse con las enfermedades producidas por los microorganismos, así como con sus formas de propagación.

Comprender la importancia que tienen los microorganismos en la industria.
Mapa conceptual

CLASIFICACIÓN DE LOS MICROORGANISMOS

- **Eucariota: nucleados, unicelulares y pluricelulares**
 - Dominio Eucarya
 - Reino Fungi
 - Mohos filamentosos
 - Levaduras
 - Reino Protista
 - Algas
 - Protozoos
 - Mohos mucilaginosos
 - Dominio Archaea
 - Mohos mucilaginosos
 - Dominio Bacteria
 - Bacterias gram +
 - Bacterias gram –
 - Bacterias AAR

- **Procariota: no nucleados, unicelulares**
 - Virus: acelulares y parasitos obligados

IMPORTANCIA DE LOS MICROORGANISMOS

- Producen enfermedades
 - Fermentadores
 - Actuando como
 - Probióticos
 - Son útiles en la industria
 - Productores de enzimas
 - En los sectores
 - Alimentación
 - Químico y farmacéutico

Glosario

Carácter taxonómico. Características estructurales, funcionales o ambientales que permiten diferenciar a un organismo de otro.
Endémico. Se dice de un evento que es propio de un país o región.

Enzima. Proteína que participa en producir y acelerar una determinada reacción en la célula.

Eucariota. Organismo, o célula compleja, dotado de orgánulos rodeados de membrana.

Genoma. Cromosoma o conjunto de cromosomas de un organismo.

Inmunodeprimido. Individuo con deficiencias en el sistema inmune que lo hacen sensible a infecciones debidas a organismos que, por lo general, no causan daño.

Microorganismo. Organismo de tamaño inferior a 1 mm.

Parásitos obligados. Organismos que solo pueden desarrollarse a expensas de otro ser vivo: no pueden ser cultivados en el laboratorio sobre medios sintéticos.

Probiótico. Organismo que proporciona beneficios al hombre cuando se ingiere como tal.

Procariota. Organismo unicelular, sin orgánulos rodeados de membrana.

Taxón. Cada una de las subdivisiones que la taxonomía utiliza para clasificar de forma ordenada a los organismos.

1.1. Microbiología. Definición y objetivos

La microbiología es la ciencia que estudia a los organismos no visibles por el ojo humano; organismos que, por ser menores de 1 mm, se denominan microorganismos. Por este motivo, la microbiología no nació hasta que no se conocieron las lentes de aumento.

Se sabe que los microorganismos habitan la Tierra desde hace más de tres mil millones de años, y que están adaptados a todos los medios: tierra, mar y aire. Es posible encontrarlos en las plantas, en los animales y en el hombre. Algunos viven en ambientes muy fríos y otros en ambientes muy cálidos. El oxígeno del aire no siempre es necesario para su existencia.

Recurso web

En 1942, el premio Nobel de Fisiología Selman Abraham Waksman escribió: “No hay campo del batallar humano, sea en la industria o en la agricultura, o en la preparación de alimentos, o en problemas de ropas, o en la conservación de la salud humana o animal y en el combate de enfermedades, donde el microbio no desempeñe un papel importante y a menudo dominante”.

En el documental *Todo sobre las bacterias*, de CienciasOsgam S. A. (accesible mediante el QR adjunto), se exponen las ventajas que suponen algunas bacterias para el hombre, esto te ayudará a reflexionar acerca de la visión futurista del fisiólogo. Al finalizar el vídeo se proponen varias actividades.
Los microorganismos son esenciales para la vida. Participan en los ciclos biogeoquímicos y en el cuidado del medioambiente. Algunos pueden ser beneficiosos para el hombre (p. ej., las bacterias intestinales ayudan a realizar la digestión de los alimentos y proporcionan vitaminas B y K); sin embargo, otros causan enfermedades tanto al hombre como a los animales y vegetales.

A través del estudio microbiológico se consigue entender la vida y las actividades de los microorganismos. Esto concierne a su forma, estructura, fisiología, reproducción, metabolismo e identificación.

Se puede afirmar que el objetivo de la microbiología consiste en comprender las actividades beneficiosas y perjudiciales de los microorganismos para conseguir aumentar los beneficios y reducir o eliminar los daños.

1.2. Clasificación de los microorganismos

El hombre clasifica a los organismos atendiendo a unas reglas definidas en la taxonomía. Esta ciencia describe, ordena y clasifica a los seres vivos con el fin de facilitar su estudio y la comunicación de los hallazgos científicos.

Hasta el siglo xviii solo se reconocían dos reinos, el animal y el vegetal, denominados Animalia y Plantae —en textos impresos, los nombres en latín se escriben en cursiva; escritos a mano, se distinguen subrayándolos—. Posteriormente, con el desarrollo de las técnicas de microscopía, se descubrieron formas de vida que no se podían encuadrar en estos dos reinos. En 1923, David Hendricks Bergey escribió un manual de bacteriología, el Bergey’s manual of determinative bacteriology, en el que recopiló todos los microorganismos descritos hasta entonces. Este manual ha ido actualizándose a lo largo de los años (la novena y última edición apareció en 1994) y se utiliza para la identificación bacteriana en los laboratorios de microbiología de todo el mundo.

Se reconocen tres dominios, de jerarquía superior al reino: Archaea, Bacteria y Eucarya. Fueron propuestos por Carl Woese en 1977 a partir de la composición química del ARN y de la membrana. De este modo, los microorganismos pueden clasificarse como se expone en la figura 1.1.

![Figura 1.1](Figura_1_1.png)

Clasificación de los microorganismos
Por *microorganismo* se entiende cualquier ser microscópico, unicelular o pluricelular, tanto procariota (arqueas y bacterias) como eucariota (ciertas algas, hongos y protozoos). Los virus son agentes infecciosos acelulares ultramicroscópicos y no entran en la consideración de ser vivo, pero por su implicación en la salud están incluidos en el campo de estudio de la microbiología. Los grupos integrantes de esta clasificación se caracterizan por:

a) *Eucariotas* (dominio *Eucarya* [figura 1.2]). Microorganismos nucleados unicelulares y pluricelulares. Incluye los mojos filamentosos y las levaduras pertenecientes al reino *Fungi*, así como algunas algas, mojos mucilaginosos y protozoos del reino *Protista*.

b) *Procariotas*. Microorganismos unicelulares sin envoltura nuclear. Incluye:

- Dominio *Archaea*. También conocidas como *arqueobacterias*. Su composición celular les permite vivir en ambientes extremos de temperatura, pH y presión osmótica. Son muy útiles en la industria.
- Dominio *Bacteria*. Antiguamente se las denominaba *eubacterias* o *bacterias verdaderas*. Se clasifican atendiendo a características morfológicas, fisiológicas y genéticas. Según la composición de su pared celular se clasifican en bacterias grampositivas, graminegativas y ácido-alcohol resistentes (BAAR).

c) *Virus*. Agentes infecciosos acelulares que carecen de actividad metabólica cuando se encuentran libres y, por tanto, son parásitos obligados. No pertenecen a ningún dominio. Se clasifican en función de su contenido genético.

Figura 1.2
Microorganismos eucariotas: protozoo (a) y levaduras en fresco (400x) (b)

Para ordenar y clasificar a los seres vivos se emplean una serie de taxones o categorías taxonómicas ordenadas jerárquicamente con una estructura piramidal, de modo que cada categoría incluye a las demás o está incluida en otra. A medida que se desciende en la pirámide, las características que tienen en común son cada vez mayores. Las categorías taxonómicas son las siguientes: dominio-reino-filo-clase-orden-familia-género-especie.

No obstante, a los microorganismos se los conocerá, fundamentalmente, por el género y la especie a la que pertenecen (sistema binomial de nomenclatura). La primera letra del nombre genérico debe ir en mayúscula y la totalidad del nombre de la especie en cursiva: *Salmonella* (nombre genérico) *typhi* (nombre específico). Normalmente se abrevia el nombre genérico: S. *typhi*. A veces las especies no se identifican plenamente y se recurre a utilizar las abreviaturas sp. y spp. En estos casos nunca se abrevia el género:
Parte I. Microbiología

Capítulo 1

Se utiliza para una especie concreta que es desconocida o cuyo nombre carece de importancia (p. ej., Salmonella sp.).

“spp.” en plural. Se utiliza para referirse a todas las especies individuales de un género (p. ej., Salmonella spp.).

En la figura 1.3 se desarrollan, como ejemplo, los taxones de Salmonella typhi, perteneciente a la familia Enterobacteriaceae.

La taxonomía es la ciencia que describe, ordena y clasifica a los seres vivos. Existen muchos taxones o categorías taxonómicas, pero los más utilizados son género y especie.

1.2.1. Células procariotas y eucariotas

Existen dos tipos de célula: la procariota y la eucariota. Se diferencian en su estructura, organización y en cómo llevan a cabo las funciones metabólicas y de reproducción. La figura 1.4 ilustra una célula procariota (bacteria) y una célula eucariota animal.

En cuanto a la estructura, la célula procariota es más sencilla: está formada por material genético, ADN y ARN, ribosomas y algunos acúmulos de reserva. Por el contrario, la eucariota es más compleja, más grande, con orgánulos rodeados de membrana, mitocondrias, aparato de Golgi, retículo endoplásmico, lisosomas y el núcleo que protege su material genético. En el cuadro 1.1 se resumen las principales diferencias estructurales. La ausencia de orgánulos internos con membrana y la presencia de un único cromosoma en las procariotas podrían ser las dos diferencias más destacadas.

La organización celular también es diferente. Las procariotas sobreviven por sí mismas como una única célula y todas las células de la misma especie son idénticas. Sin embargo, en las eucariotas se distinguen tres tipos de organización celular:
- **Pluricelular y muy diferenciada:** como es el caso de animales y plantas, en los que millones de células diferentes configuran un organismo y no pueden sobrevivir de forma aislada (la diferenciación celular comienza en el desarrollo del embrión).

- **Cenocítica o filamentosa:** en los mohos filamentosos, en los que las células crecen de forma longitudinal e idéntica formando filamentos o hifas.

- **Unicelular:** típica de protozoos, algunas algas y ciertos mohos mucilaginosos.

También existen semejanzas y diferencias en las funciones realizadas por las células procariotas y eucariotas. Son muy similares en cuanto a las reacciones que llevan a cabo para obtener energía. Esta se produce en el citoplasma y en la membrana plasmática de las procariotas. En las células eucariotas, la energía se produce en la membrana de las mitocondrias.

La principal diferencia entre células procariotas y eucariotas es que las procariotas son menos complejas y carecen de orgánulos rodeados de membrana. Las eucariotas tienen un núcleo que contiene el material genético y más de un cromosoma, mientras que las procariotas tienen el único cromosoma libre en el citoplasma.

En cuanto a las funciones de división celular y reproducción, son muy diferentes. Las eucariotas tienen más de un cromosoma, por lo que se necesita una maquinaria muy precisa para poder separarlos cuando se produce la división celular; todo el proceso se lleva a cabo durante la mitosis. Además, en las eucariotas se da la reproducción sexual, en la que interviene la meiosis (se obtienen los gametos que darán lugar al embrión después de su fusión). Las procariotas no tienen reproducción sexual y tampoco se dividen por mitosis. Todos estos conceptos serán analizados en el siguiente capítulo.
Cuadro 1.1
Principales diferencias entre las células eucariotas y procariotas

<table>
<thead>
<tr>
<th>Orgánulo</th>
<th>Eucariotas</th>
<th>Procariotas</th>
<th>Función</th>
<th>Composición química</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flagelos</td>
<td>Espermatozoides y protozoos</td>
<td>Algunos</td>
<td>Movimiento</td>
<td>Proteínas</td>
</tr>
<tr>
<td>Pared celular</td>
<td>Vegetales y mohos</td>
<td>Sí</td>
<td>Protección frente a cambios ambientales</td>
<td>Fosfolípidos, proteínas y lipopolisacáridos</td>
</tr>
<tr>
<td>Membrana plasmática</td>
<td>Sí</td>
<td>Sí</td>
<td>Protección e intercambio</td>
<td>Fosfolípidos y proteínas</td>
</tr>
<tr>
<td>Citoplasma</td>
<td>Sí</td>
<td>Sí</td>
<td>Están todos los componentes celulares</td>
<td>Agua, proteínas, azúcares, etc.</td>
</tr>
<tr>
<td>Ribosomas</td>
<td>80S</td>
<td>70S</td>
<td>Síntesis de proteínas</td>
<td>Proteínas y ARN</td>
</tr>
<tr>
<td>Cloroplastos</td>
<td>Vegetales y algas</td>
<td>No (invaginaciones de membrana en su lugar)</td>
<td>Fotosíntesis</td>
<td>Compleja</td>
</tr>
<tr>
<td>Mitocondrias</td>
<td>Sí</td>
<td>No (en aerobios, membrana plasmática con la misma función)</td>
<td>Obtención de energía</td>
<td>Compleja</td>
</tr>
<tr>
<td>Cromosomas</td>
<td>Sí, más de uno</td>
<td>Uno</td>
<td>Información genética</td>
<td>Nucleótidos e histonas (no en procariotas)</td>
</tr>
<tr>
<td>Núcleo</td>
<td>Sí</td>
<td>No</td>
<td>Proteger el material genético</td>
<td>Como la membrana plasmática</td>
</tr>
<tr>
<td>Aparato de Golgi</td>
<td>Sí</td>
<td>No</td>
<td>Tráfico de vesículas y eliminar residuos</td>
<td>Compleja</td>
</tr>
<tr>
<td>Retículo endoplásmico</td>
<td>Sí</td>
<td>No</td>
<td>Maduración de proteínas</td>
<td>Compleja</td>
</tr>
<tr>
<td>Gránulos de reserva</td>
<td>Sí (algunos con membrana)</td>
<td>Sí (sin membrana)</td>
<td>Acúmulos de sustancias energéticas o de otra índole</td>
<td>Compleja</td>
</tr>
<tr>
<td>Esporas</td>
<td>Mohos</td>
<td>Algunos</td>
<td>Resistencia, reproducción</td>
<td>Compleja</td>
</tr>
</tbody>
</table>
1.2.2. Virus

Los virus son los agentes infecciosos más pequeños que existen, son acelulares y parásitos obligados. Su composición es, básicamente, ácido nucleico protegido por capas más o menos complejas de proteínas y lípidos. El ácido nucleico puede ser ADN o ARN, en función de lo cual se clasifican como virus de ADN o de ARN (figura 1.5); dentro de ellos, se agrupan según su estructura.

En cuanto a su modo de actuación, se consideran dos tipos de virus: citopáticos y no citopáticos. Los citopáticos son aquellos que destruyen la célula hospedadora una vez que se han multiplicado; los no citopáticos son los que viven en la célula sin matarla. La infección comienza en todos los casos con la introducción del genoma vírico en el citoplasma del huésped.

Los virus citopáticos no siempre empiezan lisando la célula, en ocasiones son capaces de incorporar su ADN y multiplicarse en ella sin matarla; en ese momento, el virus se encuentra en su ciclo lisogénico. Sin embargo, llega un momento en el que comienza a sintetizar todas las moléculas que lo conforman (genoma y proteínas), a ensamblarse y liberarse de la célula, matándola. Es el ciclo lítico.

Los virus integrativos de ADN incorporan su ácido nucleico directamente en el genoma de la célula infectada. Sin embargo, los virus de ARN –como el VIH (virus de la inmunodeficiencia humana) o el del herpes– introducen en el hospedador la maquinaria enzimática necesaria para hacer el proceso de transcripción de ARN a ADN y así poder multiplicarse, ya que ni las células eucariotas ni las procariotas pueden multiplicar el ARN. La enzima capaz de llevar a cabo este proceso, exclusivo de virus de ARN, se denomina transcriptasa reversa.

La forma de actuación contra los virus se basa en dañar aquellas estructuras que son exclusivamente suyas. Así, en el virus del sida, los antivirales tratan de impedir la actuación de:

- **La proteína gp120.** Localiza en qué zonas de la membrana de los linfocitos T humanos debe producirse la unión del virus.
- **La transcriptasa reversa.** Encargada de sintetizar ADN a partir del ARN del virus para integrarse en el genoma del huésped.
- **La integrasa.** Ayuda a la incorporación del ADN vírico en el genoma de la célula infectada.

Recurso web

En el vídeo disponible en el QR adjunto se explica cómo ataca el virus del sida a los linfocitos T y produce la infección.
Actividades propuestas

1.1. Traza un esquema con las diferencias estructurales entre las células procariotas y eucariotas, así como con las principales diferencias funcionales.
1.2. Los virus son considerados acelulares, ¿en qué se basa esta consideración? Razona tu respuesta.

1.3. Principales grupos bacterianos de interés en clínica

Los microorganismos se clasifican en función de caracteres morfológicos y fisiológicos comunes. Sin embargo, en este apartado se incluyen solo aquellos de interés en clínica, y es propósito de este capítulo resumir brevemente los más destacables: las características de la pared celular que permiten la división en bacterias grampositivas, gramnegativas, ácido-alcohol resistentes (BAAR), o bien la ausencia de pared celular.

En microbiología médica son especialmente relevantes las bacterias recogidas en el Bergey’s manual que se verán en los apartados siguientes:

A) Espiroquetas

Son bacilos curvados gramnegativos en forma de espiral, como un sacacorchos. Destaca el patógeno productor de la sífilis, que pertenece al orden Spirochaetales, familia Spirochaetaceae, género Treponema y especie T. pallidum.

B) Bacterias gramnegativas aerobias

Este grupo incluye cocos, bacilos, espirilos y con flagelos. Son parásitos del hombre y de animales. Producen una patología muy diversa:

- Género Helicobacter (H. pylori). Produce úlceras y gastritis.
- Familia Pseudomonadaceae. Bacilos gramnegativos con flagelos polares, incluye una especie patógena oportunista que produce infecciones en la piel: Pseudomonas aeruginosa.
- Familia Legionellaceae. Incluye una especie muy patógena para el hombre, Legionella pneumophila, productora de la enfermedad del legionario.
- En cuanto a los cocos gramnegativos, destacan las familias patógenas Neisseriaceae (N. meningitidis y N. gonorrhoeae) y Brucellaceae, concretamente la especie B. abortus, productora de la fiebre de Malta o brucelosis en humanos.