Fundamentos de Teoría de la Imagen
Colección
CLAVES DE LA COMUNICACIÓN

Coordinadores:
Raúl Eguizábal Maza
Antón Álvarez-Ruiz
Fundamentos de Teoría de la Imagen

Manuel Canga Sosa
Agradezco la labor de documentación sobre los medios de comunicación en España realizada por Manuel Pacheco Barrio.

Reservados todos los derechos. Está prohibido, bajo las sanciones penales y el resarcimiento civil previstos en las leyes, reproducir, registrar o transmitir esta publicación, íntegra o parcialmente, por cualquier sistema de recuperación y por cualquier medio, sea mecánico, electrónico, magnético, electroóptico, por fotocopia o por cualquier otro, sin la autorización previa por escrito de Editorial Síntesis, S. A.

© Manuel Canga Sosa

© EDITORIAL SÍNTESIS, S. A.
Vallehermoso, 34. 28015 Madrid
Teléfono: 91 593 20 98
www.sintesis.com

Depósito Legal: M. 25.189-2019

Impreso en España - Printed in Spain
Índice

Presentación .. 9

Parte I
Introducción

1. **Imagen, cultura, significación** .. 13
 1.1. Introducción ... 13
 1.1.1. Imagen, cultura, lenguaje .. 14
 1.1.2. Imagen y desarrollo científico .. 16
 1.2. Tres tipos de imágenes .. 19
 1.2.1. Naturales, mentales, artificiales .. 21
 1.2.2. Unidades, modelos, textos .. 23
 1.3. Análisis e interpretación .. 25
 1.3.1. Paisajes, señales y logotipos ... 26
 1.3.2. Atracciones y repulsiones ... 29
 1.4. Teoría y método ... 31
 1.4.1. Semiótica ... 31
 1.4.2. Teoría de la Gestalt .. 32
 1.4.3. Psicoanálisis .. 33
 1.5. Imágenes y signos .. 35
 1.5.1. Significante y significado .. 36
 1.5.2. Funciones semióticas y signos icónicos .. 37
 1.6. Imágenes simbólicas ... 40
 1.6.1. Señales verdaderas .. 40
 1.6.2. Imágenes que estremecen ... 42
1.7. Resumen

| Preguntas de autoevaluación | 45 |

Parte II

Imagen y percepción

2. Formación de la imagen

<table>
<thead>
<tr>
<th>2.1. Naturaleza de la luz</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1. Onda y fotón</td>
<td>51</td>
</tr>
<tr>
<td>2.1.2. El espectro cromático</td>
<td>53</td>
</tr>
<tr>
<td>2.2. Funciones plásticas de la luz y el color</td>
<td>55</td>
</tr>
<tr>
<td>2.2.1. A propósito de la luz</td>
<td>56</td>
</tr>
<tr>
<td>2.2.2. A propósito del color</td>
<td>58</td>
</tr>
<tr>
<td>2.3. Ilusiones y espejismos</td>
<td>60</td>
</tr>
<tr>
<td>2.3.1. Materiales e incidencia de la luz</td>
<td>61</td>
</tr>
<tr>
<td>2.3.2. Uso y valor del espejo</td>
<td>63</td>
</tr>
<tr>
<td>2.4. Dos fenómenos peculiares</td>
<td>66</td>
</tr>
<tr>
<td>2.4.1. El fenómeno de la reflexión</td>
<td>67</td>
</tr>
<tr>
<td>2.4.2. El fenómeno de la refracción</td>
<td>69</td>
</tr>
<tr>
<td>2.5. Máquinas de ver y ojos artificiales</td>
<td>71</td>
</tr>
<tr>
<td>2.5.1. La cámara oscura</td>
<td>71</td>
</tr>
<tr>
<td>2.5.2. El dispositivo fotográfico</td>
<td>73</td>
</tr>
<tr>
<td>2.6. La imagen retiniana</td>
<td>76</td>
</tr>
<tr>
<td>2.6.1. El aparato visual</td>
<td>76</td>
</tr>
<tr>
<td>2.6.2. Comparación entre el ojo y la cámara</td>
<td>79</td>
</tr>
<tr>
<td>2.7. Esquema del proceso perceptivo</td>
<td>81</td>
</tr>
<tr>
<td>2.7.1. Sensaciones y percepciones</td>
<td>82</td>
</tr>
<tr>
<td>2.7.2. Más allá del modelo cibernético</td>
<td>84</td>
</tr>
<tr>
<td>2.8. Resumen</td>
<td>87</td>
</tr>
<tr>
<td>Preguntas de autoevaluación</td>
<td>88</td>
</tr>
</tbody>
</table>

3. Experiencia perceptiva y sentido de la imagen

<table>
<thead>
<tr>
<th>3.1. Experiencia y sentido</th>
<th>91</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1. Impresión y vivencia de la imagen</td>
<td>92</td>
</tr>
<tr>
<td>3.1.2. Experiencias de transformación</td>
<td>95</td>
</tr>
<tr>
<td>3.2. El campo de lo visible</td>
<td>96</td>
</tr>
<tr>
<td>3.2.1. El concepto de “campo”</td>
<td>97</td>
</tr>
<tr>
<td>3.2.2. Figura y fondo</td>
<td>99</td>
</tr>
</tbody>
</table>
Índice

3.3. Sugestión, magia, empatía ... 103
 3.3.1. Animismo ... 104
 3.3.2. Proyecciones e introyecciones ... 105
3.4. Consciente, inconsciente ... 107
 3.4.1. Condensación, desplazamiento, transformación 108
 3.4.2. Manifiesto, latente ... 110
3.5. Imagen especular e identificación ... 112
 3.5.1. El yo y el otro .. 113
 3.5.2. El umbral del mundo visible .. 114
3.6. Mirada, objeto y fuente de excitación ... 117
 3.6.1. Deseo escópico ... 118
 3.6.2. Violencia de la pulsión .. 121
3.7. Imágenes fantasmáticas .. 122
 3.7.1. Sueños diurnos ... 123
 3.7.2. Escenas primarias y percepciones crepusculares 127
3.8. Resumen ... 129
Preguntas de autoevaluación .. 131

Parte III

La representación visual

4. Imágenes estáticas .. 135
 4.1. Imagen y mímesis .. 135
 4.1.1. Dos historias legendarias ... 136
 4.1.2. Poder de reproducción ... 138
 4.2. Espacio, superficie, profundidad .. 140
 4.2.1. Trampantojos y choques visuales ... 141
 4.2.2. Variaciones luminosas, distancias y escorzos 144
 4.3. La perspectiva ... 146
 4.3.1. Proyecciones artificiales ... 147
 4.3.2. Transformaciones curiosas ... 149
 4.4. Formas elementales ..…… 150
 4.4.1. Manchas, borrones y elementos puntiformes 151
 4.4.2. La línea ... 153
 4.5. Factores dinámicos y estructuras compositivas 156
 4.5.1. Tensión, fuerza y equilibrio .. 156
 4.5.2. Proporciones doradas y sistemas fundamentales 158
 4.6. El tiempo de la fotografía .. 162
5. **La imagen en movimiento** ... 175

5.1. La imagen cinematográfica ... 175
 5.1.1. Aparece un nuevo medio ... 176
 5.1.2. El reflejo de lo real y lo real del reflejo 177

5.2. El movimiento en la imagen .. 179
 5.2.1. El efecto estroboscópico ... 179
 5.2.2. Veinticuatro verdades por segundo ... 181

5.3. Espectáculo y narración ... 183
 5.3.1. Singularidad del dispositivo cinematográfico 184
 5.3.2. Modo de representación institucional ... 185

5.4. Estructura del espacio fílmico ... 188
 5.4.1. Plano y encuadre .. 188
 5.4.2. Campo y fuera de campo .. 190

5.5. Organización del punto de vista ... 192
 5.5.1. Planificación .. 193
 5.5.2. Un misterio escalofriante .. 196

5.6. Montaje ... 200
 5.6.1. Funciones elementales y funciones complejas 200
 5.6.2. Tiempo y escritura ... 202

5.7. Conflicto, explosión, éxtasis ... 204
 5.7.1. Las piedras rugen: ideogramas y metáforas 205
 5.7.2. Experiencias reales ... 207

5.8. Resumen ... 210

Preguntas de autoevaluación ... 211

Solucionario .. 213

Epílogo ... 215

Bibliografía .. 217
2
Formación de la imagen

2.1. Naturaleza de la luz

Para entender la formación de ciertas imágenes se debe estudiar la relación entre la luz y los dispositivos que la filtran y registran. El fotógrafo se ocupa de dar forma y representar, de imponer prioridades y recorridos de lectura, pues la palabra fotografía significa literalmente, “escritura –grafos– de luz –foto–”. En este capítulo se repasará la formación de las imágenes retinianas y fotográficas, teniendo en cuenta que la estructura del aparato visual condiciona la apariencia de lo visible y la cámara podría verse como una metáfora del ojo, al que suplanta y prolonga. Cabe recordar que un histórico cineasta como Dziga Vértov aspiraba a realizar un cine que mostrase la realidad objetiva de las cosas con la pupila cristalina de su cámara, un cine-verdad –kino-pravda–, un cine-ojo –kino-glaz–.

En las siguientes lecciones se analizarán las propiedades fundamentales de la luz para demostrar que la posición real de un objeto no siempre coincide con su posición aparente, y que la percepción está a veces condicionada por cierta clase de ilusiones ópticas que obligan a ver las cosas allí donde no están. De hecho, los científicos han explicado que se puede ver un objeto situado a grandes distancias en un lugar diferente del que realmente ocupa si el rayo luminoso que lo refleja se viera alterado por las circunstancias medioambientales y cambiase de dirección. Stephen Hawking declaró que la luz del Sol tarda ocho minutos en llegar a la Tierra y, por eso, cuando se observa el Universo, se ve tal como fue en el pasado. Los telescopios han detectado los últimos resplandores de estrellas que estallaron hace miles de años, lo cual explica que, en ocasiones, las cosas se vean cuando ya han dejado de existir.

Las ilusiones ópticas pueden estar provocadas por simples errores de interpretación, por la naturaleza específica de la luz o por la propia estructura de los mate-
iales y del aparato visual, sin olvidar que las imágenes se ven en el cerebro gracias a un complejo proceso fisiológico que puede condicionar la apariencia de lo que se ve. Por algo se dice que, de noche, todos los gatos son pardos. Sería interesante averiguar qué tipo de procesos ópticos y fisiológicos se ponen en funcionamiento durante la percepción de cierto tipo de imágenes que parecen mostrar más de lo que realmente hay, o que parecen generar la ilusión del movimiento, como por ejemplo el patrón de muaré, que produce ese efecto mediante una superposición de tramas o motivos geométricos con ligeras desviaciones. Todo invita a suponer que el campo visual está constituido por fuerzas y apariencias que determinan la configuración global de la escena, fuerzas que arrastran y sustienen los estímulos en el tiempo, que los fijan y deforman en la retina o en algún lugar del cerebro.

Si se fijara la atención en la siguiente imagen (figura 2.1), se vería surgir una serie de puntos o manchas negras en las intersecciones de los ejes verticales y horizontales, manchas evanescentes que recuerdan a los puntos de Bokeh o círculos de confusión que aparecen en muchas fotografías, pero que no tienen presencia material, no forman parte de la representación propiamente dicha. Algunos autores han señalado que se trata de “fantasmas” producidos en nuestra mente por el “contraste entre el blanco y el negro” (Gibilisco, 1991: 106).

Figura 2.1. Imágenes ilusorias.

Lo que ocurre cuando se ve este tipo de figuras podría estar asociado a las denominadas “posimágenes”, imágenes irregulares que se perciben al desviar la mirada sobre un fondo blanco tras haber contemplado durante un tiempo prolongado un objeto de vivos colores. Sería una imagen remanente, una huella residual que se vería con los colores alterados, a consecuencia de la fatiga experimentada por las células fotosensibles de la retina. A veces, parecen verse incluso en negativo. Conviene, por tanto, estudiar, aunque sea a grandes rasgos, la estructura de algunos fenómenos luminosos y dispositivos implicados en la formación de las imágenes, habida cuenta del valor que han tenido para el desarrollo de las
actividades artísticas y la fabricación de las propias cámaras fotográficas, que incorporan lentes y espejos para canalizar los haces en dirección al negativo o sensor de captura.

2.1.1. Onda y fotón

La luz es una forma de energía natural que ha condicionado el desarrollo de importantes procesos metabólicos y puede manifestarse al mismo tiempo como radiación electromagnética, infrarroja y ultravioleta. Es una forma de energía potencialmente abrasiva, lo cual ha hecho necesario disponer de una serie de barreras que permitan filtrarla y contenerla, a fin de evitar quemaduras irreversibles y daños irreparables. Se han ocupado de estudiar la luz autores como Hawking, Rossi, Malacara, Tipler, Tarásov y Tarásova, Hubel, Jaque Rechea, García Solé, Luna y Tudela.

Frente a los modelos corpusculares defendidos por Descartes e Isaac Newton—los cuales creían en la existencia de partículas diminutas que escapan de los cuerpos luminosos para llegar hasta la retina—, se impuso el modelo sostenido por Christiaan Huygens a finales del siglo XVII, según el cual la luz sería un fenómeno ondulatorio de tipo mecánico propagado por el éter. Sus teorías las prolongaron Thomas Young y Augustin Fresnel, aunque el gran propulsor de la teoría ondulatoria fue el escocés James Clerk Maxwell, el cual unificó el campo eléctrico con el magnético, introduciendo el concepto de campo electromagnético. Las ondas luminosas serían de naturaleza electromagnética.

Sus propuestas fueron cuestionadas por la teoría cuántica introducida a principios del siglo XX por Max Planck, Albert Einstein y Arthur H. Compton, que estudiaron la estructura material de la luz, los efectos fotoeléctricos y las partículas que desprenden los cuerpos negros al calentarse, con sus correspondientes reacciones energéticas y movimientos moleculares. Paul Dirac fue el primero en construir una teoría cuántica de la radiación en 1928. El concepto de cuerpo negro es una abstracción ideal a la que se acercan algunos objetos reales, pues designa a los objetos que emiten luz mediante el incremento de su temperatura interior. En realidad, todos los cuerpos emiten radiaciones al encontrarse a una temperatura superior a los 0ºK, aunque no todos con la suficiente intensidad para convertirse en cuerpos incandescentes. Los fuegos fatuos serían un ejemplo de cuerpo animal o vegetal que emite destellos luminosos por las reacciones que experimenta durante la putrefacción, pequeñas llamaradas visibles en la noche.

Las nuevas aportaciones abrían perspectivas diferentes y obligaban a decidir entre dos posibilidades: pensar la luz como onda electromagnética o flujo de fotones, considerado el “fotón” como la cantidad más pequeña en que puede dividirse la energía luminosa, unidad indivisible. Los expertos comprobaron que podría interpretarse de ambas maneras y todo dependería del modelo teórico elegido y su verificación empírica.
Parte II. Imagen y percepción

Daniel Malacara ha explicado que ondas y fotones serían “dos manifestaciones diferentes del mismo ente, que se presentan según las circunstancias del experimento” (1991: 47).

La luz puede pensarse como corpúsculo y onda, pero ambos términos son excluyentes, porque, según los entendidos, no existe dispositivo experimental que revele a la vez su naturaleza corpuscular y su naturaleza ondulatoria. Para evitar las complicaciones propias de un estudio que rebasa nuestra competencia, bastará con definir la luz como una vibración electromagnética similar a otras radiaciones invisibles para el ojo humano que se propaga en línea recta, trazando un movimiento ondulatorio, a una velocidad estimada de trescientos mil kilómetros por segundo en el vacío. Se denomina ondulatorio al movimiento causado por una perturbación espacial que modifica el estado de reposo y provoca el desplazamiento de las partículas, a la manera de lo que ocurre con las bolas de billar, que van trasmitiendo su empuje de unas a otras cuando se golpean.

El movimiento ondulatorio sería, por tanto, resultado de la presión ejercida sobre un cuerpo que genera reacciones en cadena. Cuando esa presión se produce en el vacío, tiene lugar una variación de los campos electromagnéticos que puede llegar a incidir sobre los sensores visuales y adoptar formas variadas. Aunque se haya dicho que se desplazan en línea recta, los rayos pueden trazar curvas sutiles a nivel macroscópico por la influencia de las fuerzas gravitacionales y la existencia de capas atmosféricas de diferente densidad y temperatura, hasta provocar que los objetos lejanos se perciban desviados con respecto a su posición real. Es lo que ocurre con las estrellas.

El siguiente esquema (figura 2.2) muestra algunos componentes del rayo luminoso. La longitud de onda (λ) es la distancia entre dos puntos situados en concordancia de fase (A ↔ B), se expresa en nanómetros y se obtiene dividiendo la velocidad de la luz por la frecuencia (λ = c/f), que es el número de ondas que pasan por un punto determinado durante una unidad de tiempo. Amplitud sería la distancia que va del centro de la onda, tomando como referencia el eje horizontal, a la cresta, que es la parte superior, mientras que la inferior se denomina valle.

Figura 2.2. Esquema de la longitud de onda.
Formación de la imagen

La distancia que separa a los puntos A y B podría oscilar en el campo electromagnético entre un kilómetro y la diez mil millionésima parte de un metro \((10^{-10})\), pero el ojo humano solo puede percibir ondas cuya longitud oscila entre trescientos ochenta y setecientos cincuenta nanómetros, aproximadamente, lo cual indica que la capacidad visual es reducida y limitada. Es preciso entender el concepto de longitud de onda porque afecta a la definición y experiencia del color, que no es una propiedad intrínseca de los objetos, sino un reflejo, una apariencia, el modo en que el aparato visual reacciona ante la incidencia de los rayos luminosos.

A medida que se aleja de la fuente, el rayo va perdiendo intensidad y calor, de modo que afecta a la apariencia de la escena vista. Lo mismo ocurre con los focos artificiales, lámparas de tungsteno, tubos fluorescentes y de neón, etc. Según la ley de la inversa del cuadrado, la intensidad no se va reduciendo de manera proporcional a la distancia, sino inversamente proporcional al cuadrado de la distancia. A una distancia de dos metros con respecto a la fuente, la luz no es dos, sino cuatro veces menos intensa. Si se sitúa un objeto a cuatro metros, la iluminación sería diecisésis veces menos intensa.

2.1.2. El espectro cromático

El color no es, por tanto, una propiedad específica del objeto, sino una apariencia derivada del modo en que el cerebro reacciona ante los estímulos que filtra el ojo canalizándose a través del nervio óptico. Es una apariencia variable y efímera que va cambiando con el paso de las horas y las circunstancias ambientales. Desde el punto de vista biológico, parece desempeñar funciones de supervivencia relativas a la práctica del mimetismo, la intimidación y la discriminación, y, desde una perspectiva cultural, está ligado a valores semánticos y estéticos implicados muchas veces en procesos de reconocimiento.

La percepción del color está condicionada por la estructura del ojo y la capacidad que la materia tiene de reflejar o absorber longitudes de onda. Si se ve un objeto azul es porque absorbe la longitud de onda correspondiente al verde y al rojo, y refleja sobre el ojo la longitud del color azul. La luz que proyecta el sol parece blanca, pero no es más que una ilusión óptica, ya que se podría descomponer con la ayuda de un prisma para mostrar las diferentes longitudes que la componen. Es lo que hizo en el siglo XVIII Isaac Newton, el cual llegó a publicar un importante tratado sobre Óptica en 1704. El espectro de los colores que el ojo humano puede percibir oscila entre las longitudes de onda correspondientes al violeta y al rojo, más allá de los cuales comienzan los ultravioleta (UV) y los infrarrojos (IR). Algunos reptiles como la serpiente de cascabel pueden ver en la región de los rayos infrarrojos. El rojo es un color de onda larga, pues alcanza mayor medida que los verdes, azules y violetas. El siguiente esquema muestra la distribución secuencial de los colores en el espectro y sus correspondientes medidas expresadas en nanómetros (figura 2.3).
Parte II. Imagen y percepción

Figura 2.3. Descomposición espectral de la luz blanca.

Para entender por qué se perciben los colores de ese modo, hay que considerar la teoría de la tricromaticidad o tricromacia que propusieron a finales del siglo XVIII George Palmer y, luego, Thomas Young, Maxwell y Helmholtz, los cuales explicaron que las sensaciones de color fundamentales son rojo, verde y azul, debido a la existencia de tres receptores oculares sensibles a sus correspondientes longitudes de onda. De ahí deriva el sistema RGB empleado en los actuales dispositivos de captura, registro, reproducción e impresión de imágenes, tanto en sistemas analógicos como digitales: Red, Green, Blue. La colorimetría triestímulo se basa en esa división y se ocupa de realizar cálculos numéricos para codificar los colores conforme a unos parámetros estandarizados.

Debido a los estudios desarrollados en el campo de la percepción –que permitieron detectar, por ejemplo, incongruencias relativas al fenómeno de la adaptación cromática, consistente en la pérdida de sensibilidad para un determinado matiz al repetirse la estimulación–, autores como Ernst Mach, Edwin Land y Ewald Hering se opusieron a esta teoría. Hering sostuvo la existencia de seis colores fundamentales asociados por pares, amarillo-azul, rojo-verde y blanco-negro, aunque pensaba igualmente que había tres sistemas retinianos. En realidad, la diferencia afectaba al funcionamiento del mecanismo interno. Era defensor de la teoría de “procesos oponentes”, según la cual cada receptor se dedicaba al procesamiento de un par de colores oponentes.

Posteriormente, Leo Hurvich y Dorothea Jameson intentaron conciliar ambas propuestas, subrayando que las diferencias afectaban a distintos momentos del proceso de codificación. En esa línea, han hecho destacadas aportaciones investigadores como Russell De Valois, con sus trabajos sobre las células sensibles al color y el procesamiento perceptivo. Luna y Tudela lo han explicado en su libro, Percepción visual.
Hubel explicó que no hay tres colores primarios únicos y las teorías de Young-Helmholtz son correctas en la fase de recepción y las de Hering en las siguientes etapas de la vía visual. Basta con hacer una revisión del tema para percibir su complejidad y comprender que preciso avanzar con cautela, a fin de evitar conclusiones precipitadas. Por ejemplo, en lo que atañe a los colores primarios o fundamentales y los secundarios, ya que no funcionan de igual modo los llamados colores de luz que los colores materiales que emplea un pintor en su paleta, como tampoco funcionan igual las combinaciones por adición que las de sustracción. Para un fotógrafo que trabaja con luces, los primarios son rojo, verde y azul, que sumados en la misma proporción generan blanco, mientras que un pintor que trabaje con pigmentos de óleo —obtenidos mediante mezclas minerales, compuestos químicos y aceites— debe emplear rojo, amarillo y azul, cuya combinación genera el negro.

Para medir y clasificar las luces, se ha utilizado desde hace tiempo el sistema de “temperatura de color” que inventó a mediados del siglo xix William Thomson, más conocido como lord Kelvin, el cual midió la temperatura de los colores a partir del aspecto que iba adquiriendo el hierro al calentarse en una fragua. Kelvin descubrió que, justo antes de empezar a arder, el hierro se pone blanco, pasando antes por diferentes estados de calor que se traducen visualmente en diferentes tonalidades cromáticas. Existe una relación directa entre calor y color expresada en grados Kelvin (ºK).

La luz diurna resulta de la mezcla uniforme de todas las longitudes de onda procedentes del sol, fuente de energía radiante. Es la luz que llega a nuestros ojos tras haberse refractado por las capas atmosféricas y se dice que tiene una temperatura de color de 5500ºK, aproximadamente, tomando como referencia la luz del mediodía. Entre la oscuridad y la máxima intensidad luminosa, que puede llegar a quemar la retina, hay un amplio abanico de luces que pueden filtrarse con los dispositivos de la cámara, y la quemadura es un modo particular de huella fotográfica. Pioneros como Fox Talbot y, después, Moholy-Nagy y los surrealistas, probaron a hacer fotografías sin cámara: basta con disponer de una superficie emulsionada con productos reactivos para conseguir imágenes de registro, huellas que florecen.

Se dejarán, en cualquier caso, estas cuestiones para otras asignaturas de corte más técnico e instrumental que permitan profundizar en lo que solo se ha expuesto de manera abreviada y sintética, pues, como decía el neurofisiólogo David Hunter Hubel, Premio Nobel de Medicina y Fisiología, conocer la química de la tinta no nos permite comprender una obra de Shakespeare. En lo que sigue, se describirán los valores plásticos de la luz y el color, algunas de sus principales funciones expresivas.

2.2. Funciones plásticas de la luz y el color

La intensidad de la luz natural está sometida a las variaciones del globo terráqueo, que condicionan el ángulo de incidencia de los rayos y las temperaturas, afectando
Parte II. Imagen y percepción

así a la apariencia de la imagen registrada, según podría comprobarse realizando una fotografía en el mismo lugar, a la misma hora y con las mismas condiciones técnicas, pero en diferentes estaciones del año. De igual modo, conviene saber que la del mediodía es una luz cenital, plana y sin relieve que satura los colores y elimina las sombras, mientras que la vespertina o crepuscular es una luz que las alarga y acusa los relieves.

La incidencia de los rayos y su intensidad pueden modificar la apariencia de los objetos, llegando incluso a producir falsas percepciones de forma, tamaño y textura. También pueden afectar a la percepción de la concavidad y la convexidad. Al atardecer, debido a la posición oblicua del sol con respecto a la superficie terrestre, hay un predominio de vibraciones electromagnéticas de onda larga que bañan el paisaje con tonalidades rojizas y anaranjadas. Sugieren sensaciones de calidez, intimidad o misterio, provocando en casos de especial sensibilidad experiencias crepusculares y estados de melancolía.

2.2.1. A propósito de la luz

Aunque puedan realizarse excelentes fotografías en cualquier escenario y con cualquier tipo de cámara e iluminación, conviene tener en cuenta que su aspecto puede controlarse mediante el uso de distintas fuentes artificiales, desde las bombillas incandescentes, cuya tonalidad anaranjada se debe al calentamiento por descarga eléctrica de sus filamentos metálicos, hasta los tubos de neón con gases o los fluorescentes, revestidos de fósforo, que incluyen filamentos de tungsteno que producen gamas azuladas, sin olvidar las técnicas de manipulación incluidas en las cámaras digitales. Por ejemplo, el bracketing, empleado para enriquecer la profundidad y el relieve tonal mediante una superposición de fotogramas con diferentes valores de exposición.

En los estudios profesionales suelen utilizarse focos de emisión continua, que producen sombras densas y afiladas, lámparas que emiten luces difusas con sombras suaves, luces de emisión instantánea o flashes –inalámbricos, anulares, esclavos, monolíticos, generadores, etc.– y luces de efectos, empleadas para matizar o realzar detalles, como las pistolas de luz y complementos como las pantallas reflectantes o absorbentes, paraguas difusores, rejillas de gobo o cookies –paneles recortados que proyectan sombras con diferentes formas–, snoots –reductores cónicos o paralelos–, flags –accesorios opacos que bloquean las luces parasitarias– y cajas de luz, que son fuentes de luz difusa de distintos tamaños empleadas para fotografiar pequeños objetos. Ni que decir tiene que estas breves indicaciones no agotan, ni mucho menos, las diferentes posibilidades de iluminación empleadas en los espectáculos de masas, como las catedrales de luz diseñadas por Albert Speer para las celebraciones del partido nazi en el Campo Zeppelin o las que se utilizan en conciertos y discotecas, donde son habituales las luces estroboscópicas.
Formación de la imagen

La intensidad se puede traducir en términos fotográficos como “luminosidad”, que define la cantidad de luz que emite una fuente o refleja un objeto, la cual provoca que los colores parezcan más o menos claros, y que se manifiesta a través del “brillo”, que tiende a enmascarar el color y puede manifiestarse de diversas formas (Artigas et al., 2002: 343). Es preciso distinguir, asimismo, entre la intensidad de la luz incidente y la intensidad de la reflejada, a fin de equilibrar la luminosidad general de una escena y determinar los puntos de interés. La relación entre ambas ya la explicó Leonardo da Vinci en su *Tratado de la pintura*.

El fotógrafo puede graduar los niveles de iluminación para provocar diferentes sensaciones y respuestas emocionales, acusadas en el cine mediante el movimiento y los cambios de plano. Los siguientes fotogramas (figura 2.4) han sido extraídos de una película dirigida por Federico Fellini que tuvo como director de fotografía a Gianni Di Venanzo, y podrían servir para demostrar que el manejo de la luz condiciona la apariencia y el significado de lo visible, además de extremar los efectos de fascinación específicos de la imagen:

![Figura 2.4. La luz desempeña una función creativa y da forma a la imagen.](image)

Fuente: Ocho y medio (Fellini 8½, Federico Fellini, 1963).

Al margen de las cuestiones relativas a la planificación, es evidente que existen entre esos fotogramas acusadas diferencias de iluminación que afectan a la apariencia de lo visible y han sido determinadas por necesidades expresivas. El primero muestra una escena iluminada con luz natural en un paraje exterior, aunque es probable que haya sido reforzada con focos artificiales y difusores para reducir contrastes y permitir que se distingan los detalles de su rostro, quemado en el segundo fotograma mediante el uso deliberado de potentes focos situados a corta distancia. Apenas exis-
Parte II. Imagen y percepción

ten gradaciones tonales intermedias y casi toda la imagen se ha visto sometida a un violento contraste de luces y sombras, negros y blancos. El tercero muestra a la actriz iluminada en contrapicado para deformar sus facciones y realzar el componente dramático de una escena que recuerda al tenebrismo caravaggiesco, mientras que el cuarto la muestra recortada en contraluz, iluminada con un foco situado sobre el eje de cámara que acentúa el componente fantasmagórico. Gracias al meticuloso trabajo del operador de cámara, se ha logrado producir una cierta sensación de relieve apoyada por el uso de paneles verticales y visillos con diferentes texturas y puntos de luz.

Cinco son, por tanto, los factores que es preciso considerar al estudiar la iluminación en el contexto de la representación visual, teniendo en cuenta que sus funciones plásticas están supeditadas al manejo de las cámaras y aparatos como el fotómetro, que mide la intensidad luminosa:

1. La fuente, que nos obliga a pensar la estructura de la luz y la posición de los focos.
2. La intensidad, que se traduce en brillo y saturación –grado de pureza–.
3. La trayectoria o dirección de los haces en la escena.
4. Las reacciones de los soportes.
5. Las capacidades de manipulación y transformación facilitadas por el uso de medios auxiliares.

2.2.2. A propósito del color

Al describir un color con expresiones como verde chillón demostramos que la estimulación cromática es capaz de activar diferentes canales sensoriales y forzar al lenguaje para definir con palabras su esquiva naturaleza. Es una expresión retórica que alude al componente excesivo y estridente del color, y confirma que la percepción puede verse afectada por la “sinestesia“, que alude a la activación que un estímulo produce en un canal de recepción sensorial distinto al suyo propio. En este caso, el del oído. Como decía Paul Claudel, el ojo oye. No debe confundirse con la “cenestesía“, que designa la sensación que el sujeto tiene de su estado corporal. Así, la palabra blue puede referirse en inglés tanto al color azul como a un estado de melancolía, y la expresión color vivo alude a algo que nada tiene que ver con la longitud de onda, sino con la situación emocional que el color provoca, con el conjunto de sensaciones que despertar, con el derroche de vida. Cabe recordar que se atribuye al jesuita y matemático Louis Bertrand Castel la invención del órgano de colores en el siglo XVIII: un clavecín con teclas diseñadas para mostrar cintas de color que se iban alternando al interpretar una melodía, de tal punto que se producía una asociación entre sonidos y colores.

Los colores cálidos se oponen a los fríos porque sus longitudes de onda están separadas en el espectro y producen sensaciones antagónicas. El frío polar de los azules claros contrasta con el calor sofocante de un bermellón saturado, sobre todo si se emplea para iluminar estancias de dimensiones reducidas. La yuxtaposición de cálidos
Formación de la imagen

y fríos genera relieve y profundidad: los cálidos tienden a aproximarse al espectador, los fríos a alejarse. Los rayos azulados tienen más energía, aunque su longitud de onda sea menor, y los rojos tienen menos energía, aunque su longitud de onda sea mayor.

Las luces potentes, con acusado brillo e intensidad, la saturación y los tonos rojizos producen mayor nivel de excitación que los verdosos o azulados, pero no se sabe con certeza a qué se deben esas reacciones del sistema nervioso, por qué resulta más excitante uno que otro. Algunos autores han descubierto que la circulación sanguínea aumenta en situaciones dominadas por el rojo, hasta llegar a producir alteraciones del comportamiento, debidas, quizás, a una asociación directa con la sangre. En términos generales, existe una relación inmediata entre las emociones y el color, mientras que la relación con la forma está marcada por las distancias que la interpretación y la inteligencia imponen.

Se reproducen a continuación tres ejemplos del aspecto que tendrían las escenas tomadas en diferentes situaciones atmosféricas, con diferentes longitudes de onda y temperaturas. Tres fotografías realizadas en diferentes estaciones y franjas horarias. Aunque la temperatura de color pueda cambiar en función de la latitud y la ubicación geográfica, las montañas nevadas e iluminadas por el sol pueden llegar a rebasar los 5500ºK (figura 2.5), que es la temperatura media de la luz-día a la que se ajustan las luces discontinuas tipo flash. Una puesta de sol en la costa puede alcanzar alrededor de 3000ºK (figura 2.6) y una escena fotografiada con una bombilla doméstica, una vela o un candil, 1500ºK (figura 2.7). El relámpago de una tormenta podría alcanzar los 30000ºK.

Figura 2.5. Luz diurna.
Figura 2.6. Luz crepuscular.
Figura 2.7. Interior iluminado con velas.
La interacción de superficies, colores y reflejos afecta a la percepción del espacio y las distancias. Lo que imprime color a un objeto no depende solo de la luz que refleja y absorbe, sino también de las luces del entorno, de la influencia del ambiente. La percepción del color está condicionada por la longitud de onda, la saturación y la luminosidad, pero también por la proximidad de otros colores, según indicó Leonardo en su Tratado, donde aconsejaba a los principiantes tener en cuenta los reflejos, reverberaciones y sombras.

El color desempeña numerosas funciones plásticas, entre las cuales se podrían citar su capacidad para dar forma y crear espacio, dinamizar las estructuras composivas, simular ritmos y movimientos y despertar diferentes estados de ánimo. Muchos artistas han supeditado el sentido de sus trabajos a los valores cromáticos, cuyo significado ha ido variando con el tiempo. De hecho, el color era en sí mismo un símbolo de poder y riqueza en la Antigüedad, porque era difícil de conseguir y no estaba al alcance de cualquier bolsillo.

La pintura bizantina, por ejemplo, se desarrolló en un contexto simbólico que asociaba el dorado a los resplandores de la santidad, también ligado por analogía al valor del oro y al tesoro de los valores que es preciso conservar. Bastaría, en cualquier caso, con revisar las ingeniosas composiciones del beato Liébana o los retablos que todavía se conservan en las iglesias románicas para comprobar que la sensualidad del color no estaba reñida con la densidad conceptual de los programas iconográficos cristianos. En Arte y percepción visual, recordaba Arnheim que los colores eran para un pintor como Nicolás Poussin halagos para atrapar miradas, y Van Gogh estaba convencido de que la pasión amorosa podía representarse combinando los complementarios: “la misteriosa vibración de los tonos unidos”.

Los cineastas han multiplicado las posibilidades plásticas de la pintura mediante el movimiento y la transformación escenográfica, dando muestras de su sensibilidad a la hora de expresar ideas y situaciones mediante el color. Podrían mencionarse numerosos ejemplos. En la principal secuencia amorosa de El caso de Thomas Crown (The Thomas Crown Affair, 1968), Norman Jewison utilizó los colores del espectro para distorsionar la apariencia de los personajes y transformar la escena en un carrusel de manchas policromadas, velando así la imagen de ese acto que iba anunciándose poco a poco. El cineasta acertó a la hora de expresar que el goce tiende a desenfocar los objetos de la realidad y alterar las referencias espaciales, que es una experiencia multicolor.

2.3. Ilusiones y espejismos

El campo de lo visible está compuesto por una multitud de haces que, al rebotar y refractarse, producen imágenes tan sorprendentes como el arcoíris o los fantasmas de Broken, que designan figuras gigantescas que parecen moverse en el firmamento, palacios-fantasma que crecen en la lejanía y desaparecen a medida que se
acortan distancias –*Fata Morgana*– o buques fantasma vuelto del revés que antaño presagiaban terribles naufragios –*Holandés Errante*–. La situación atmosférica puede facilitar los efectos de refracción en mares y lagos, que operan como grandes superficies reflectantes. El agua de esos charcos imaginarios que se forman sobre la arena o las carreteras de asfalto sería, en realidad, un reflejo del firmamento, una ilusión óptica. Baltrušaitis señalaba en su estudio sobre el espejo que la Luna, las gotas de lluvia, las nubes y el aire mismo “componen las instalaciones catópticas del cielo”, y los científicos nos han enseñado que en el cielo pueden formarse enormes lentes aéreas capaces de producir una variada gama de espejismos e ilusiones, como el centelleo estelar, el achatamiento del Sol o las franges borrosas producidas en el horizonte durante el ocaso (Tarássov y Tarásova, 1985).

Aunque resulte paradójico, podría afirmarse que ese tipo de ilusiones son reales y objetivas, porque las pueden contemplar varios observadores al mismo tiempo. Lo mismo que algunas imágenes especulares. Además de invertir y deformar la imagen de los objetos, los espejos permiten contemplar las cosas allí donde no están, hasta hacer creer que la realidad puede desdoblarse y verse habitada por seres virtuales, ubicados en lugares inaccesibles.

No hay que olvidar que la palabra *espejo* deriva de *speculum*, y este de *specere*, que en latín significa “mirar”, término ligado a “espectáculo”, que deriva de *spectaculum* y *spectare*, lo cual confirma la estrecha relación entre la percepción y la especulación teórica, que ayuda a ver las cosas en perspectiva. El estudio de los espejos nos permitirá entender, además, varios aspectos de nuestra relación con el mundo circundante y la estructura de la conciencia, entre los cuales cabría destacar:

- La formación de imágenes en dispositivos naturales o artificiales.
- La relación que se establece entre el ojo y las apariencias.
- Los procesos de identificación imaginaria y constitución del yo, hasta el punto de que el psicoanálisis ha utilizado modelos ópticos para explicarlos, advirtiendo que lo “imaginario” está centrado en la imagen especular que el otro le proporciona.

2.3.1. Materiales e incidencia de la luz

La luz es una magnitud energética que puede filtrarse y manipularse con la ayuda de ciertos materiales para facilitar la formación de imágenes, reduciendo su velocidad, desviando su trayectoria y descomponiendo sus haces en diferentes longitudes de onda. Los ejemplos más evidentes nos los ofrecen los espejos y filtros fotográficos, que pueden condicionar la apariencia de la imagen mediante una modificación de la intensidad, la longitud de onda y el ángulo de vibración, sin olvidar los efectos de niebla o difusión –*flou*–, multivisión, estrella o acercamiento, que se han ampliado en las aplicaciones digitales.
Parte II. Imagen y percepción

Cuando la luz incide sobre una superficie, pueden ocurrir varias cosas:

a) Si el material es opaco, absorbe todas las longitudes de onda y transforma la luz en calor.

b) Si es transparente, dejará pasar el haz luminoso, pero filtrando y seleccionando las longitudes de onda.

c) Si es traslúcido, producirá efectos de difusión que desenfocan y generan ambientes brumosos.

d) Si está pulido, provocará efectos de reflexión.

e) Si es transparente, pero tiene diferente densidad, producirá efectos de refracción o modificación de la dirección de los haces (figura 2.8).

Figura 2.8. La estructura material del objeto condiciona la orientación de los haces y la luminosidad de la escena.

Un “filtro” –ejemplos b, c y e– es cualquier elemento que se interpone entre el sensor de captura, ya sea el ojo o una cámara, y la escena para modificar su apariencia, como ocurre con los acetatos que se emplean en los focos de iluminación en cine y fotografía o los cristales coloreados de las vidrieras, que filtran los rayos del sol para crear prodigiosos efectos cromáticos en el interior de las iglesias. El cineasta Douglas Sirk –alumno de Erwin Panofsky durante su juventud– introdujo un efecto análogo en una secuencia de la película Solo el cielo lo sabe (All That Heaven Allows, 1955) que transcurría en una habitación con una ventana circular de cristales tintados. Gracias a su trabajo con las luces y los filtros, el director de fotografía, Russell Metty, responsable también de la fotografía de Escrito sobre el viento (Written on the Wind, Douglas Sirk, 1956), Sed de mal (Touch of Evil, Orson Welles, 1958), Imitación a la vida (Imitation of Life, Douglas Sirk, 1959) o Espartaco (Spartacus, Stanley Kubrick, 1960), consiguió bañar la estancia en la que transcurriría la acción con los colores del arcoíris, y así imprimía un tono lírico a una escena protagonizada por Jane Wyman y Gloria Talbott.